Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,4-Dichloro-6-(\{2-[(3,5-dichloro-2-hydroxybenzylidene)aminolethyl\}iminomethyl)phenol

Ali Ourari, ${ }^{\text {a }}$ Lotfi Baameur, ${ }^{\text {a }}$ Sofiane Bouacida, ${ }^{\text {b }}$ * Bouet Gilles ${ }^{\mathrm{c}}$ and Allain Magali ${ }^{\text {d }}$

${ }^{\text {a }}$ Laboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de I'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, ${ }^{\mathbf{b}}$ Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, ${ }^{\text {c }}$ Laboratoire SONAS, E.A. 921, Faculte de Pharmacie, 16 Bd Daviers, 49045 ANGERS cedex 01,
 cedex, France
Correspondence e-mail: bouacida_sofiane@yahoo.fr
Received 23 April 2012; accepted 5 May 2012
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.031 ; w R$ factor $=0.081$; data-to-parameter ratio $=15.2$.

The title molecule, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$, lies about an inversion center. The symmetry-unique part of the molecule contains an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. In the crystal, molecules are arranged in corrugated layers parallel to ($\overline{1} 01$). Weak $\pi-\pi$ stacking interactions, with a centroid-centroid diatance of 3.7923 (13) \AA, are present.

Related literature

For the preparation of the title compound, see: Lu \& Xia (2006); Trivedi et al. (1992). For the synthesis of similar compounds, see: Kadish et al. (1990); Taylor et al. (1991); Moutet \& Ourari (1997) Ourari et al. $(2008 b, 2011)$. For their applications, see: Ourari et al. (2008a); Kadish et al. (1990).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=406.08$
Monoclinic, $P 2_{1} / c$
$a=7.529$ (1) \AA
$b=10.718$ (2) \AA
$c=10.759(2) \AA$
$\beta=101.40(2)^{\circ}$
$V=851.1(3) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.50 \times 0.23 \times 0.19 \mathrm{~mm}$

Data collection
Stoe IPDS diffractometer
Absorption correction: gaussian
(ABSGAUSS in PLATON;
Spek, 2009)
$T_{\text {min }}=0.794, T_{\text {max }}=0.893$
8137 measured reflections
1671 independent reflections
1192 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$

110 parameters

$w R\left(F^{2}\right)=0.081$
H -atom parameters constrained
$S=0.94$
1671 reflections
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O9-H9 $\cdots \mathrm{N} 2$	0.82	1.84	$2.562(2)$	147

Data collection: EXPOSE (Stoe \& Cie, 1999); cell refinement: SELECT and CELL (Stoe \& Cie, 1999); data reduction: INTEGRATE (Stoe \& Cie, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg \& Berndt, 2001); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Jean-Claude Daran, Laboratoire de Chimie de Coordination, UPR-CNRS 8241, Toulouse, France, for his valuable input and insightful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5465).

References

Brandenburg, K. \& Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kadish, K. M., Araullo, M. C., Han, M. M. \& Franzen, B. C. (1990). J. Am. Chem. Soc. 112, 8364-8368.
Lu, X.-H. \& Xia, Q. H. (2006). J. Mol. Catal. A, 250, 62-69.
Moutet, J. C. \& Ourari, A. (1997). Electrochim. Acta, 42, 2525-2531.
Ourari, A., Baameur, L., Bouet, G. \& Khan, A. M. (2008a). J. Electrochem. Соттии. 10, 1736-1739.
Ourari, A., Khelafi, M. K., Khan, M. A. \& Bouet, G. (2011). Adv. Phys. Chem. 1-11.
Ourari, A., Ouari, K., khan, M. A. \& Bouet, G. (2008b). J. Coord. Chem. 61, 3846-3859.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1999). IPDS-1 Software. Stoe \& Cie GmbH, Darmstadt, Germany.
Taylor, T. G., Byun, Y. S., Taylor, P. S., Battioni, P. \& Mansuy, D. (1991). J. Am. Chem. Soc. 113, 7821-7823.
Trivedi, B. M., Bhattacharya, P. K., Ganeshpure, P. A. \& Satish, S. (1992). J. Mol. Catal. A, 75, 109-115.

supplementary materials

Acta Cryst. (2012). E68, o1700 [doi:10.1107/S1600536812020235]

2,4-Dichloro-6-(\{2-[(3,5-dichloro-2-hydroxybenzylidene)amino]ethyl\}iminomethyl)phenol

Ali Ourari, Lotfi Baameur, Sofiane Bouacida, Bouet Gilles and Allain Magali

Comment

The synthesis of new chelating agents such as Schiff bases became an extensive area of research owing to their high structural versatility. This is due to their high ability to coordinate transition metals leading to the corresponding complexes. This class of compounds may be involved in many applications as in coordination chemistry, biology, analysis, catalysis and electrocatalysis (Ourari et al., 2008a; Kadish et al., 1990). Herein, we report the preparation and crystal structure the of the title compound. These type of polyhalogenated ligands are endowed with high resistance towards oxidation reactions seeing that the chlorine atoms are adequately grafted at ortho and para-positions of the phenolic entities, preventing their further oxidation reactions as it was early reported for the porphyrinic complexes (Kadish et al., 1990; Taylor et al., 1991; Moutet et al., 1997). Some mononuclear complexes of Schiff base-Mn(III) compounds have been synthesized and used as catalysts towards epoxidation of olefins. This showed that the dihalogenated complexes behaved as the most efficient catalysts. Recently, we have as confirmed this observation when studying their analogues such as as those of iron(III) (Ourari et al., 2008b) and ruthenium(III) (Ourari et al., 2011) for the same oxidation reactions.
The molecular structure of (I) is shown in Fig. 1. The asymmetric unit of the title compound, consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre. The crystal packing can be described as corrugated layers paralel to (-101) (Fig. 2). Fig. 3 shows the crystal structure with helical chains of molecules as a result of the 2_{1} screw axes. There are two intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in the molecule (Table 1, Fig. 2). Weak $\pi-\pi$ stacking interactions with a centroid to centroid distance 3.7923 (13) \AA are present between inversion related molecules.

Experimental

All reagents were AR grade, obtained from Alfa Aesar Chemical Company. 3, 5-Dichlorosalicylaldehyde, 1,2-diaminoethane and anhydrous ethanol were used without any further purification. The ligand prepared in this work was performed according the literature (Lu et al., 2006; Trivedi et al., 1992). Thus, a solution of 3, 5-dichlorosalicylaldehyde $382 \mathrm{mg}\left(2.10^{-3} \mathrm{~mole}\right)$ in anhydrous ethanol $(10 \mathrm{ml})$ was dropwise added to a stirring ethanolic solution $(10 \mathrm{ml})$, containing $60 \mathrm{mg}\left(1.10^{-3} \mathrm{~mole}\right)$ of ethylenediamine. The reaction mixture was refluxed for about 2 h leading to the formation of a yellow precipitate. This precipitate was collected by filtration, washed several times with ethanol and then dried on phosphoric anhydride $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$, its yield is of 90%. The resulting compound (I) was re-crystallized from a solvent mixture dichloromethane/acetone with the volume proportions 90 and 10, respectively. Under the slow evaporation, suitable crystals for X-ray diffraction were obtained.

Refinement

H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and O) with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (methine, aromatic), $0.97 \AA$ (methylene) and $\mathrm{O}-\mathrm{H}=0.82 \AA$ (hydroxyl) with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Computing details

Data collection: EXPOSE (Stoe \& Cie, 1999); cell refinement: SELECT and CELL (Stoe \& Cie, 1999); data reduction: INTEGRATE (Stoe \& Cie, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg \& Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figure 1

The molecular structure of the title compound with displacement ellipsoid drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: (i) $-x+1,-y,-z$

Figure 2
Layers of molecules paralel to (-101). Dash lines indicate hydrogen bonds.

Figure 3
A projection of part of the crystal structure along [001].

2,4-Dichloro-6-(\{2-[(3,5-dichloro-2- hydroxybenzylidene)amino]ethyl\}iminomethyl)phenol

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=406.08$
Monoclinic, $P 2_{1} / c$

$$
\begin{aligned}
& b=10.718(2) \AA \\
& c=10.759(2) \AA \\
& \beta=101.40(2)^{\circ} \\
& V=851.1(3) \AA^{3} \\
& Z=2
\end{aligned}
$$

Hall symbol: -P 2ybc
$a=7.529$ (1) \AA
$F(000)=412$
$D_{\mathrm{x}}=1.585 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4871 reflections
$\theta=2.7-25.9^{\circ}$

Data collection

Stoe IPDS
diffractometer
Detector resolution: 6.66 pixels mm^{-1}
Oscillation Phi Incr 2.1 deg scans
Absorption correction: gaussian
(ABSGAUSS in PLATON; Spek, 2009)
$T_{\min }=0.794, T_{\text {max }}=0.893$
8137 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.081$
$S=0.94$
1671 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

```
\(\mu=0.71 \mathrm{~mm}^{-1}\)
\(T=295 \mathrm{~K}\)
Prism, yellow
\(0.50 \times 0.23 \times 0.19 \mathrm{~mm}\)
1671 independent reflections
1192 reflections with \(I>2 \sigma(I)\)
\(R_{\text {int }}=0.049\)
\(\theta_{\text {max }}=26.1^{\circ}, \theta_{\text {min }}=2.7^{\circ}\)
\(h=-9 \rightarrow 9\)
\(k=-13 \rightarrow 13\)
\(l=-13 \rightarrow 13\)
```

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0486 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.4564(3)$	$0.03468(18)$	$0.0456(2)$	$0.0533(5)$
H1A	0.3651	-0.0174	0.0720	0.064^{*}
H1B	0.5464	0.0559	0.1203	0.064^{*}
C3	$0.3844(3)$	$0.24891(17)$	$0.05017(19)$	$0.0418(4)$
H3	0.4478	0.2490	0.1336	0.050^{*}
C4	$0.3008(2)$	$0.36389(16)$	$-0.00494(17)$	$0.0358(4)$
C5	$0.3094(2)$	$0.47168(17)$	$0.06874(19)$	$0.0411(4)$
H5	0.3694	0.4703	0.1530	0.049^{*}
C6	$0.2293(3)$	$0.57999(16)$	$0.0169(2)$	$0.0427(5)$
C7	$0.1393(3)$	$0.58432(16)$	$-0.1083(2)$	$0.0438(5)$
H7	0.0854	0.6580	-0.1425	0.053^{*}
C8	$0.1302(2)$	$0.47829(17)$	$-0.18167(18)$	$0.0409(4)$

supplementary materials

C9	$0.2103(2)$	$0.36623(15)$	$-0.13247(18)$	$0.0362(4)$
N2	$0.3722(2)$	$0.14858(14)$	$-0.01354(16)$	$0.0449(4)$
O9	$0.1968(2)$	$0.26567(12)$	$-0.20694(13)$	$0.0479(3)$
H9	0.2404	0.2052	-0.1650	$0.072 *$
C16	$0.23717(8)$	$0.71310(5)$	$0.11055(6)$	$0.0639(2)$
Cl8	$0.01342(8)$	$0.47988(5)$	$-0.33747(5)$	$0.06174(19)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0655(14)$	$0.0390(10)$	$0.0563(14)$	$0.0175(9)$	$0.0141(10)$	$0.0124(9)$
C3	$0.0446(10)$	$0.0426(10)$	$0.0388(10)$	$0.0057(8)$	$0.0094(8)$	$0.0054(8)$
C4	$0.0348(9)$	$0.0336(9)$	$0.0398(10)$	$0.0016(7)$	$0.0093(8)$	$0.0025(8)$
C5	$0.0406(10)$	$0.0405(10)$	$0.0424(11)$	$-0.0021(8)$	$0.0085(8)$	$-0.0027(8)$
C6	$0.0432(10)$	$0.0316(9)$	$0.0568(13)$	$-0.0051(8)$	$0.0183(9)$	$-0.0053(9)$
C7	$0.0449(10)$	$0.0290(9)$	$0.0607(14)$	$0.0041(8)$	$0.0181(9)$	$0.0073(9)$
C8	$0.0395(10)$	$0.0387(10)$	$0.0453(11)$	$0.0026(8)$	$0.0099(8)$	$0.0082(8)$
C9	$0.0390(9)$	$0.0302(8)$	$0.0405(10)$	$0.0018(7)$	$0.0112(8)$	$0.0003(8)$
N2	$0.0485(9)$	$0.0355(8)$	$0.0508(10)$	$0.0108(7)$	$0.0097(7)$	$0.0072(8)$
O9	$0.0621(9)$	$0.0359(7)$	$0.0433(8)$	$0.0086(6)$	$0.0050(6)$	$-0.0026(6)$
C16	$0.0764(4)$	$0.0381(3)$	$0.0824(4)$	$-0.0077(3)$	$0.0282(3)$	$-0.0184(3)$
C18	$0.0731(4)$	$0.0593(3)$	$0.0478(3)$	$0.0151(3)$	$-0.0003(2)$	$0.0117(3)$

Geometric parameters ($A,{ }^{\circ}$)

C1-N2	1.462 (2)	C5-H5	0.9300
$\mathrm{C} 1-\mathrm{Cl}{ }^{\text {i }}$	1.484 (4)	C6-C7	1.383 (3)
C1-H1A	0.9700	C6-Cl6	1.7410 (19)
C1-H1B	0.9700	C7-C8	1.378 (3)
$\mathrm{C} 3-\mathrm{N} 2$	1.269 (2)	C7-H7	0.9300
C3-C4	1.456 (2)	C8-C9	1.400 (2)
C3-H3	0.9300	C8-Cl8	1.732 (2)
C4-C5	1.395 (2)	C9-09	1.335 (2)
C4-C9	1.406 (3)	O9-H9	0.8200
C5-C6	1.375 (3)		
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	109.9 (2)	C5-C6-C7	120.98 (17)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7	C5-C6- Cl 6	119.66 (16)
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7	C7-C6-Cl6	119.34 (14)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.7	C8-C7-C6	119.31 (16)
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.7	C8-C7-H7	120.3
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2	C6-C7-H7	120.3
N2-C3-C4	121.22 (18)	C7-C8-C9	121.46 (18)
N2-C3-H3	119.4	C7-C8-C18	120.31 (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4	C9-C8-C18	118.21 (15)
C5-C4-C9	119.92 (16)	O9-C9-C8	119.32 (17)
C5-C4-C3	120.11 (17)	O9-C9-C4	122.41 (15)
C9-C4-C3	119.97 (16)	C8-C9-C4	118.26 (16)
C6-C5-C4	120.07 (18)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	119.58 (18)
C6-C5-H5	120.0	C9-O9-H9	109.5

supplementary materials

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.0		
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$177.24(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 9$	$179.49(17)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$-2.4(3)$	$\mathrm{C} 18-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 9$	$1.1(2)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$0.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-179.52(17)$	$\mathrm{C} 8-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$-178.22(13)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.0(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{O} 9$	$-179.50(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 6$	$178.76(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{O} 9$	$0.2(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.1(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$-0.2(2)$
$\mathrm{C} 6-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-178.80(14)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$179.41(16)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.1(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	$-179.34(17)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 8$	$178.35(14)$	$\mathrm{C} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$-139.3(3)$

Symmetry code: (i) $-x+1,-y,-z$.
Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 9 \cdots \mathrm{~N} 2$	0.82	1.84	$2.562(2)$	147

